Login×




My Cart


IGNOU BMTC 133 Solved Assignment 2024
Rs.
Rs. 50

IGNOU BMTC 133 Real Analysis Solved Assignment 2024

IGNOU BMTC 133 Real Analysis Solved Assignment 2024
Rs.
Rs. 50

Last Date of Submission of IGNOU BMTC-133 (BAG) 2024 Assignment is for January 2024 Session: 30th September, 2024 (for December 2024 Term End Exam).
Semester Wise
January 2024 Session:
30th March, 2024 (for June 2024 Term End Exam).
July 2024 Session: 30th September, 2024 (for December 2024 Term End Exam).

Title Nameignou BMTC 133 solved assignment 2024
TypeSoft Copy (E-Assignment) .pdf
UniversityIGNOU
DegreeBACHELOR DEGREE PROGRAMMES
Course CodeBAG
Course NameBACHELOR OF ARTS
Subject CodeBMTC 133
Subject NameReal Analysis
Year2024
Session-
LanguageEnglish Medium
Assignment CodeBMTC-133/Assignmentt-1//2024
Product DescriptionAssignment of BAG (BACHELOR OF ARTS) 2024. Latest BMTC 133 2024 Solved Assignment Solutions
Last Date of IGNOU Assignment Submission
Last Date of Submission of IGNOU BMTC-133 (BAG) 2024 Assignment is for January 2024 Session: 30th September, 2024 (for December 2024 Term End Exam).
Semester Wise
January 2024 Session:
30th March, 2024 (for June 2024 Term End Exam).
July 2024 Session: 30th September, 2024 (for December 2024 Term End Exam).

Assignment CodeBMTC 133/2024
Rs.
Rs. 50
Questions Included in this Help Book

Ques 1.

Which of the following statements are true or false? Give reasons for your answers in the form of a short proof or counter-example, whichever is appropriate:

i) Every infinite set is an open set.

ii) The negation of p∧ ~ q is p → q.

iii) −1is a limit point of the interval ]−2 ,1],

iv) The necessary condition for a function f to be integrable is that it is continuous.

v) The function f:\mathbb{R}\rightarrow \mathbb{R} defined by f(x)=\left | x-2 \right |+\left | 3-x \right |  is differentiable at x=5.

Ques 2.

Give an example for each of the following.

i) A set in \mathbb{R} with a unique limit point.

ii) A set in \mathbb{R} whose all points except the one are its limit points.

iii) A set having no limit point.

iv) A set S with S^{\circ}=\bar{S}.

v) A bijection from \mathbb{N}_{odd} to \mathbb{Z}.

Ques 3.

Give an example of a divergent sequence which has two convergent subsequences. Justify your claim.

Ques 4.

The product of two divergent sequences is divergent. True or false? Justify.

Ques 5.

Let (a_{n})_{n\in \, \mathbb{N}}be any sequence. Show that \lim_{n\rightarrow \infty }a_{n}=L  iff for every ε > 0, there exists some N\in \! \mathbb{N} such that n ≥ N implies a_{n}\in N_{\varepsilon }(L).

Ques 6.

d) Show that \left ( \frac{1}{n^{2}+n+1} \right )_{n\in \mathbb{N}} is a Cauchy sequence.

Ques 7.

Evaluate

\lim_{n\rightarrow \infty }\,\left [ \frac{n}{1+n^{2}}+\frac{n}{4+n^{2}}+\frac{n}{9+n^{2}}+\cdots+\frac{n}{2n^{2}} \right ].

Ques 8.

Determine the points of discontinuity of the function f and the nature of discontinuity at each of those points:

\left\{\begin{matrix} -x^{2}\: , &when\: x\leq 0 \\4-5x, &when\: 0< x\leq 1 \\3x-4x^{2}\: , &when\: 1< x\leq 2 \\ -12x+2x\: , & when\: x< 2 \end{matrix}\right.

Also check whether the function f is derivable at x = .1

Ques 9.

Find the following limit

\lim_{x\rightarrow 0}\frac{1-cos\: x^{2}}{x^{2}sin\: x^{2}}

Ques 10.

Prove that a strictly decreasing function is always one-one

 

Ques 11.

Determine the local minimum and local maximum values of the function f defined by f(x)=3-5x^{3}+5x^{4}-x^{5}\: .

Ques 12.

Let f:[01]\rightarrow  \mathbb{R} be a function defined by f(x)=x^{m}(1-x)^{n}\: , where m,n\in \mathbb{N}. Find the values of m and n such that the Rolle’s Theorem holds for the function f.

Ques 13.

Let f be a differentiable function on [\alpha ,\beta ]and x\in [\alpha ,\beta ]. Show that, if f{}'(x)=0 andf{}'(x)>0, then f must have a local maximum at x.

Ques 14.

Suppose thatf\: :[0,2]\rightarrow \mathbb{R} is continuous on [0,2] and differentiable on ]0,2[ and that f )0( = ,0 f )1( = ,1 f )2( = .1  (i)

Show that there exists c_{1}\in (0,1) such that {f}'(c_{1})=1.

Show that there exists c_{2}\in (0,1) such that {f}'(c^{2})=0,

(iii) Show that there exists c\in (0,2) such that .{f}'(c)=\frac{1}{3}.

Ques 15.

Test the following series for convergence.

(i) \sum_{n=1}^{\infty }n\: x^{n-1}\, ,x> 0\: .

(ii)\sum_{n=1}^{\infty }\left [ \sqrt{n^{4}+9}-\sqrt{n^{4}-9} \right ]

Ques 16.

Show that   \sum_{n=1}^{\infty }(-1)^{n+1}\frac{5}{7n+2} is conditionally convergent.

Ques 17.

Use Cauchy’s Mean Value Theorem to prove that:

\frac{cos\, \alpha -cos\, \beta }{sin\, \alpha-sin\, \beta }=tan\theta ,0< \alpha < \theta< \beta < \frac{\pi }{2}

Ques 18.

Using Weiestrass M-test, show that the following series converges uniformly.\sum_{n=1}^{\infty }n^{3}\: x^{n}\: ,x\in \left [ -\frac{1}{3},\frac{1}{3} \right ].

Ques 19.

Use the Fundamental Theorem of Integral Calculus to evaluate the integral

\int_{0}^{1}\left ( 2x\, sin\frac{1}{x}-cos\frac{1}{x} \right )dx.

Ques 20.

Show that the function f\, :\mathbb{R}\rightarrow \mathbb{R} defined by f(x)=2x+7 has an inverse by applying the inverse function theorem. Find its inverse also.

Ques 21.

Check whether the series  f(x)=2x+7\sum_{n=1}^{\infty }\frac{n^{2}x^{5}}{n^{4}+x^{3},},x\in[0,\alpha ]  is uniformly convergent or not, wher \alpha \in \mathbb{R}^{+}.

Ques 22.

Show that the series \sum_{n=1}^{\infty }\frac{sin\, n\theta }{n} does not converge uniformly on the interval \left ]0,2\pi \right [.

Ques 23.

If the power series .\sum_{n=0}^{\infty }a_{n}x^{n} converges uniformly in \left ]\alpha ,\beta \right [, then so does \sum_{n=0}^{\infty }a_{n}(-x)^{n}. True or false? Justify.

Rs.
Rs. 50

Related Assignments

subject
Join Our Facebook Group
IGNOU Doubts & Queries
Call Now
Contact Us
New to IGNOU Login to Get Every Update