Login×




My Cart


IGNOU MTE 6 Solved Assignment 2024
Rs.
Rs. 50

ignou MTE 6 solved assignment 2024

ignou MTE 6 solved assignment 2024
Rs.
Rs. 50

Last Date of Submission of IGNOU MTE-06 (BSC) 2024 Assignment is for January 2024 Session: 30th September, 2024 (for December 2024 Term End Exam).
Semester Wise
January 2024 Session:
30th March, 2024 (for June 2024 Term End Exam).
July 2024 Session: 30th September, 2024 (for December 2024 Term End Exam).

Title NameIGNOU MTE 6 2024 Solution
TypeSoft Copy (E-Assignment) .pdf
UniversityIGNOU
DegreeBACHELOR DEGREE PROGRAMMES
Course CodeBSC
Course NameBachelor in Science
Subject CodeMTE 6
Subject NameAbstract Algebra
Year2024
Session-
LanguageEnglish Medium
Assignment CodeMTE-06/Assignmentt-1//2024
Product DescriptionAssignment of BSC (Bachelor in Science) 2024. Latest MTE 06 2024 Solved Assignment Solutions
Last Date of IGNOU Assignment Submission
Last Date of Submission of IGNOU MTE-06 (BSC) 2024 Assignment is for January 2024 Session: 30th September, 2024 (for December 2024 Term End Exam).
Semester Wise
January 2024 Session:
30th March, 2024 (for June 2024 Term End Exam).
July 2024 Session: 30th September, 2024 (for December 2024 Term End Exam).

Assignment CodeMTE 6/2024
Rs.
Rs. 50
Questions Included in this Help Book

Ques 1.

Which of the following statements are true? Justify your answers. (This means that if you think a statement is false, give a short proof or an example that shows it is false. If it is true, give a short proof for saying so.)

i)\phi(n)=n-1\forall n\in \mathbb{N}, where \phi is the Euler-phi function.

ii) If G_{1} and G_{2} are groups, and f:G_{1}\rightarrow G_2 is a group homomorphism, then o(G_1)=o(G_2).

iii) If G is an abelian group, then G is cyclic.

iv) If G is a group and H\underline{\Delta}G,then \mid G:H\mid=2.

v) Every element of S_n has order at most  n .

vi) If R is a ring and I is an ideal of R , then I xr = rx ∀ x ∈ I and r ∈ R .

vii) If \sigma \in S_n\left ( n\geq 3 \right ) is a product of an even number of disjoint cycles, then sign \left ( \sigma \right )=1.

viii) If a ring has a unit, then it has only one unit.

ix) The characteristic of a finite field is zero.

x) The set of discontinuous functions from \left [ 0,1 \right ] to \mathbb{R} form a ring with respect to pointwise addition and multiplication.

Ques 2.

Define a relation R on \mathbb{Z}, by R = =\left \{ \left ( n.n+3k \right )\mid k\in \mathbb{Z} \right \}. Check whether R is an equivalence relation or not. If it is, find all the distinct equivalence classes. If R is not an equivalence relation, define an equivalence relation on \mathbb{Z}.

Ques 3.

Consider the set X=\mathbb{R}\setminus \left \{ -1 \right \}. Define * on Xby x_1*x_2=x_1+x_2+x_1x_2\forall x_1,x_2\in X.

i) Check whether (X,*) is a group or not.

ii) Prove that x ∗ x ∗ x ∗K∗ x (n times) = (1+ x) −1 ∀ n∈N n and x ∈X .

Ques 4.

Give an example, with justification, of a commutative subgroup of a noncommutative group.

Ques 5.

Check whether or not A =\left \{ z\in \mathbb{C}^{*}\mid \mid z\mid \in \mathbb{Q}\right \} is a subgroup of 

i)       \left ( \mathbb{C}^{*},. \right ),                 ii)     \left ( \mathbb{C},+ \right )

Ques 6.

Let \left ( G,. \right ) be a finite abelian group and m\in \mathbb{N}. Prove that S=\left \{ g\in G\mid (o(g),m)=1 \right \}\leq G.

Ques 7.

Let G be a group of order n ≥ 2 , with only two subgroups -\left \{ e \right \} and itself. Find a minimal generating set for G . Also, find out whether n is a prime or a composite number, or can be either.

Ques 8.

Consider the map f_{ab}:\mathbb{R}\rightarrow \mathbb{R}:f_{ab}(x)=ax+b. Let b=\left \{ f_{ab}\mid a,b\in \mathbb{R},a\neq 0 \right \}. Then B is a group with respect to the composition of functions. Check whether or not A=\left \{ f_{ab}\mid a\in \mathbb{Q}^{+},b\in \mathbb{R} \right \} is a normal subgroup of B .

Ques 9.

Explicitly give the elements and structure of the group S_n/A_n,n\geq 5.

Ques 10.

Let G be a group of order 56 . What are all its Sylow p-subgroups? Show that G is not simple, i.e., G must have a proper normal non-trivial subgroup.

Ques 11.

Find a group G , and a homomorphism « of G , so that \O (G)\simeq S_3 and Ker \simeq A_4.  Is G abelian? Give reasons for your answer.

Ques 12.

Let G be a group such that G Aut is cyclic. Prove that G is abelian.

Ques 13.

Check whether \left \{ \begin{bmatrix} m &0 \\ n & 0 \end{bmatrix}\mid m,n\in \mathbb{Z} \right \}  is a subring of the ring ) ( M2 Z or not. If it is, check whether or not it is an ideal of the ring also. If I is not a subring of the ring, then provide a subring of the ring.

Ques 14.

Prove that \frac{\mathbb{R}[x]}{\left \langle x^{2}+1 \right \rangle}\simeq \mathbb{C}     as rings.

Ques 15.

Find all the units of \mathbb{Z}_{12}.

Ques 16.

Let R be a commutative ring with unity and r ∈ R . Prove that \frac{R[x]}{\left \langle x-r \right \rangle}\simeq R  using the Fundamental Theorem of Homomorphism. Hence show that \frac{R[x,y]}{\left \langle x-r \right \rangle}\simeq R[x].

Ques 17.

Let D=\left \{ f\left ( x,y \right ) +g\left ( x,y \right )i\left | f,g\in \mathbb{Z} \right [x,y]\right \}\subseteq \mathbb{C}[x,y].Check whether D is a UFD or not.

Ques 18.

Let R=\mathbb{Z}[\sqrt{2}]\,and\,M={a+b\sqrt{2}\in R \mid 5\mid\,\,and\,\,5\mid b }.

i) Show that M is an ideal of R .

ii) Show that if a|5 / or b/|5 , then 5| (a^{2}+b^{2}), for ,a . b ∈ \mathbb{Z}.

iii) Hence show that if N is an ideal of R properly containing M , then N = R .

iv) Show that ^R/_M is a field, and give two distinct non-zero elements of this field.

Ques 19.

Show that there are infinitely many values of α for which x^{7}+15x^{2}-30x+\alpha is irreducible in \mathbb{Q}[x]. .

Rs.
Rs. 50

Related Assignments

subject
Join Our Facebook Group
IGNOU Doubts & Queries
Call Now
Contact Us
New to IGNOU Login to Get Every Update